Access this content:

Abstract

Background

The guidelines to conduct and interpret conventional pulmonary function (PFT) tests are frequently reviewed and updated. However, the quality assurance and quality control (QA/QC) guidelines for respiratory oscillometry testing remain limited. QA/QC guidelines are essential for oscillometry to be used as a diagnostic pulmonary function test (PFT) in a clinical setting.

Methods

We developed a QA/QC protocol shortly after oscillometry was introduced in our laboratory as part of a clinical study. The first clinical study began after the research personnel completed 3 h of combined didactic and hands-on training and establishment of a standard operating protocol (SOP) for oscillometry testing. All oscillometry tests were conducted using the initial SOP protocol from October 17, 2017, to April 6, 2018. At this time, the first QA/QC audit took place, followed by revisions to the SOP, the addition of a QA/QC checklist, and the development of a 12-h training program. A second audit of oscillometry tests was conducted from April 9, 2018, to June 30, 2019. Both audits were completed by a registered cardiopulmonary technologist from the Toronto General Pulmonary Function Lab.

Results

The first audit evaluated 197 paired oscillometry-PFT tests and found 10 tests (5.08%) to be invalid, with a coefficient of variation > 15%. The second audit examined 1,930 paired oscillometry-PFT tests; only 3 tests (0.16%) were unacceptable, with a coefficient of variation > 15%. Improvement in QA/QC was significantly better compared to the first audit (P < .001).

Conclusion

Although oscillometry requires minimal subject cooperation, application of the principles that govern the conduct and application of a PFT are important for ensuring that oscillometry testing is performed according to acceptability and reproducibility. Specifically, the inclusion of a SOP, a proper training program, a QA/QC checklist, and regular audits with feedback are vital to ensure that oscillometry is conducted accurately and precisely.


The articles include uses of tremoflo products or describes research devices that may not have been cleared by FDA
Keywords
oscillometry, spirometry, plethysmography, quality improvement
Source

Wu JK, DeHaas E, Nadj R, Cheung AB, Dandurand RJ, Hantos Z, et al. Development of Quality Assurance and Quality Control Guidelines for Respiratory Oscillometry in Clinic Studies. Respir Care [Internet]. 2020 Mar 24;65(11):1687–93

Contact us
Interested in THORASYS products? Contact us to get a personalized quote.
Let us know how we can assist. We would love to hear from you.
Form submitted successfully!
We'll get back to you shortly.